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Abstract

In 2020, shortly after the onset of the global Covid-19 pandemic, we devised a set of Model
Challenges to explore what our discipline’s inherited knowledge had to offer to accurately
model (and understand) how governments would respond to the pandemic. Set up as a
crowdsourced tournament, we first gathered models of political drivers of Covid mortality
and then asked experts to assess which models would perform well or poorly. In this paper,
we describe and take stock of this large scale collective effort. Our analysis suggests three
main conclusions. First, the ability of political scientists to predict or explain which poli-
ties will react effectively to the pandemic and which not appears very limited. Second, even
when our models are relatively successful, as a discipline we are not good at telling apart
effective and ineffective models. Third, the best results are generated when models are com-
bined. On the basis of these findings, we suggest that our discipline would benefit from the
establishment of continued structured interactions that encourage multiple perspectives on
phenomena of common interest and that aggregate ideas across researchers. As a discipline,
we should sharpen our theories by seeking to predict future events instead of predicting the
past. [199 words]



1 Introduction

Like social scientists across the world, when Covid-19 unexpectedly locked us all inside, we
were eager to respond using our professional expertise. But what did we have to offer as
political scientists? We were not medically-trained professionals who could save individual
lives; we were not public health experts who could model disease flows and give advance
warning; and we were not specialists in building or delivering vaccines. Could all our years
of accumulated knowledge provide socially useful guidance in the face of a daunting global
public health emergency? Having studied governments and political processes for years,
could we say anything definitive about which pre-existing features would make some coun-
tries more successful than others in protecting the public from death by Covid, for instance?

When we started working on the Model Challenges (MCs) in summer and fall 2020,
newspaper front pages were covered with hypotheses about the potential importance of po-
litical and social variables for Covid-19 outcomes. “The world needs more women leaders
. . . ” proclaimed The Conversation – Canada in December 2020; “Poll: Most Republicans Say
Covid Threat Overblown . . . ” Forbes reported in October of the same year; “Will COVID-19
kill democracy?” asked Foreign Policy in September 2020 (Adkins & Smith, 2020; Champoux-
Paillé, 2020; Walsh, 2020). In the United States, Republicans were accused of allowing Covid
to proceed unchecked due to their refusal to support policies of social distancing; around
the world, women leaders were lauded for their superior communications during and re-
sponsiveness to the pandemic; and many worried that democracies might compare badly to
authoritarian regimes in their capacity to manage the pandemic. Perhaps partisan polariza-
tion, the gender of political leadership, and regime type would prove consequential for how
many people died from Covid.

Political scientists do not have an off-the shelf answer to this question. Asking about the
political determinants of Covid-19 fatalities is asking about a new event, but also an event in a
small class of events that are not typically at the center of research in the discipline (see Lynch,
2020 for a timely discussion of research on the politics of health). But at amore abstract level a
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large body of political science research does focus on government effectiveness, government
responsiveness, government engagement with crises.

Our goal was then to see how this broader knowledge could be marshaled to address a
new question of global concern.

First we sought to bring together as many social scientists as possible and aggregate our
combined expertise to understand the dynamics of the pandemic. There are multiple ways
to gather and aggregate research on a topic. At one end there is a compilation approach,
where excellent work by different researchers are brought together and published together.
The Perspectives on Politics special issue on pandemic preparedness is a good example of this
approach (Lynch et al., 2022). At another extreme are more fully deliberative processes that
seek to produce a consensus on a question. The Intergovernmental Panel on Climate Change
(IPCC) process is an example of this (for criticism see Oppenheimer et al., 2007). Meta-
analysis occupies amiddle groundwheremultiple studies, sharing a common treatment and
outcome, are combined to reach an aggregate conclusion. Our approach is similar though
importantly our interest was in eliciting and aggregating multiple accounts of a single event
rather than single accounts of multiple events.

To do so, we built on previous crowdsourced competitions (such as Bennett and Lan-
ning, 2007) and challenges (such as the Fragile Families Challenge (Salganik et al., 2020)).
Our Steering Committee, drawn from six research institutions around the world, assembled
datasets built from accessible and potentially theoretically relevant measures from 166 coun-
tries around the world as well as from first-tier subnational units (states and territories)
in Mexico, the United States, and India. We then created an interactive website to crowd-
source statistical models predicting future Covid mortality numbers. As an incentive for
participants we offered co-authorship (reflected in the co-author list for this article) to those
who submitted the most successful predictions of logged deaths per million—a decision that
we return to below. Providing harmonized covariates and Covid-19 mortality data through
November 16, 2020 we gave participants a six-week window (December 1, 2020 through Jan-
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uary 20, 2021) to submit statistical models predicting future cumulative mortality as of Au-
gust 31, 2021 with substantive justifications for their models. Modelers were permitted to
include up to three covariates from the data we supplied or to provide data of their own on
other variables.

Second, we wanted to understand whether political scientists agree on what constitutes
a good explanation. Even if they do not generate models on a given topic, do they recognize
a good model when they see it? To address this question, we put the submitted models
on the Social Sciences Prediction Platform (SSPP) and asked social scientists to forecast the
performance of the models that we had received in the MCs.

Following model submission and forecasting, we aggregated the models and the fore-
casts in a number of ways and then evaluated individual models, individual forecasts, and
various aggregations of models and forecasts against the realized outcome data. How good
were modelers who submitted to the MCs in identifying variables that accurately predicted
Covid-19 mortality? How good were experts in identifying which models would perform
well? If we pitted modelers and forecasters against a simple machine learning (ML) al-
gorithm, would humans do as well as the algorithm? If we aggregated models and drew
out their best features across submissions, would we find that our community as a whole
out-performed individual modelers? Or were there exceptionally talented modelers in our
crowd who could beat a machine? And finally, if we could accurately predict mortality rates
from a global pandemic, were we also able to provide an understanding of why variations
in those rates existed that was deeper than what we read in the newspapers — at a time
when the best analytic news coverage of the pandemic achieved remarkable insight, espe-
cially through innovative data visualization (illustrated bywork of The Financial Times (Burn-
Murdoch, 2022))?

In this paper, we report on our experiences with the Model Challenges as a strategy for
gathering and accessing knowledge. Our results are sobering but not depressing. The R2

loo

(the main measure of predictive accuracy that we use, consisting of leave-one-out predictive
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success, detailed below) of the best single submitted model is 0.483 while that of the median
model is only 0.171, indicating wide variation in model quality. A benchmark ML model,
consisting of predictors selected by Lasso (least absolute shrinkage and selection operator),
has an associated R2

loo of 0.377. This tells us that most models that were contributed were
much less accurate than a standard ML model, although a small number of contestants sub-
mitted highly predictive models that bested Lasso. The forecasting exercise found that fore-
casters were not very good at predicting which models would perform well, casting doubt
on the ability of human experts to discern among competing theories of a common outcome.
We also used an off-the-shelf statistical ensemble procedure (called stacking) as one way to
aggregate models, and find that the results outperform the median model by a large mar-
gin, outperform the best model by 4 percent, and outperform aggregate predictions made by
expert forecasters. Thus, collectively social scientists –— at least those that self-selected into
our challenge –— possess substantive knowledge that can be aggregated using existing and
well-validated statistical procedures, and doing this produces results that greatly outper-
form what any of us, however expert, can do alone. The challenge going forward is to devise
methods and sites of intellectual exchange that bring together existing individual expertise
and allow machines to filter and combine what we already know.

We focus on three specific arenas in which to distill lessons we learn from the Model
Challenges. First, we discuss the substantive findings of the MCs, which we interpret as show-
ing that the institutional structures and social processes thatwemight expect to predictwhich
governments would be better positioned to tackle a challenge like the Covid-19 pandemic
are in fact not very predictive of success. This is a negative but important substantive find-
ing. Second, we discuss the promise — and also the logistical and ethical difficulties — of
crowdsourcing knowledge and massive coauthorship. Finally, based on the statistical results of
our analysis, we make the case for combining our collective expertise with statistical algorithms.
We believe that the final point is the most general one to draw from the MCs: collectively,
we know more than almost any of us individually. Aggregating competing statistical mod-
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els and refining the results using algorithmic methods may therefore be the surest route to
predictive success.

Substantively, the procedures built into the MCs sought to integrate explanation and
prediction. We required each submission include a text explanation to justify the choice of
statistical predictors, andwe explicitly encouragedmodelers to draw on the literature inwrit-
ing those explanations. In essence, we were asking how transferable the understandings and
explanations that our intellectual community had developed about other outcomes were to
the outcome of Covid-19mortality. In this way, we provide a kind of stress test of our existing
theories for a newly-emerged domain of interest.

Our paper proceeds as follows. Section 2 describes the Model Challenges and the fore-
casting exercise as well as how we aggregate and evaluate models and forecasts. Section 3
provides the substantive results, explaining howmodels and forecasts perform and what we
learn from the MCs about how governments affect Covid-19 mortality outcomes. In Section
4, we draw lessons about the underlying question itslef and the types of explanations that
emerged, about largescale collaborations of this form, and about strategies for aggregating
explanations in political science research.

2 What We Did

2.1 How the Model Challenges Operated

The Model Challenges sough to gather, aggregate, and evaluate rival accounts for a com-
mon phenomenon. With a focus on a single outcome – here Covid mortality — the substan-
tive interest is in explanation: what accounts for variation in outcomes, or more specifically,
what political logics account for diverging outcomes. Given multiple explanations, can we
combine these into an aggregate account? And how can we evaluate these individual and
aggregate accounts. Can we, as a discipline, recognize a good account when we see one?
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Tournament COVID-19 mortality Dates of Models/forecasts
stage data provided as of: stage evaluated against data as of:

1 Model generation Nov. 16, 2020 Dec. 1, 2020 - Aug. 31, 2021
(Model Challenges) Jan. 20, 2021

2 Model assessment Feb. 28, 2021 May 1-31, 2021 Aug. 31, 2021
(SSPP forecasting) Aug. 31, 2022

Table 1: Summary of the MC research timeline.

To answer these questions we implemented Model Challenges with two phases.

1. Model generation: In the first phase we invited researchers to develop models that
use social and political variables to predict cumulative COVID-19 deaths, measured by
logged deaths per million, as of a specific future date (August 31, 2021). We asked
researchers to include written explanations for why selected socio-political variables
would predict COVID-19 mortality. We created four challenges: (1) across countries;
(2) across states in the USA; (3) across Mexican states; and (4) across Indian states. We
selected these three countries because of data availability and team expertise, as well
as a general desire to maximize geographic variation.

Researchers contributedmodels of COVID-19 mortality between December 1, 2020 and
January 20, 2021. When making predictions, participants were provided cumulative
COVID-19 mortality rates as of November 16, 2020. We refer to the researchers who
submitted models as modelers.

2. Model assessment by other researchers: We invited social scientists to assess the pre-
dictive capability of the models submitted in stage one. Forecasters were asked to eval-
uate what they thought would be the predictive performance of models as of August
31, 2021 and August 31, 2022.

Forecasters evaluated models on the Social Science Prediction Platform during May
2021. To aid their assessments, we provided predictive metrics for each model as of
February 2021.

The sequence of activities in each stage of the tournament is shown in Table 1.
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Logged cumulative COVID-19 deaths per million,
as of August 31, 2021

Challenge no. obs. Median Mean Minimum Maximum Std. Dev.
Crossnational 166 6.12 5.64 0 8.73 1.87
India 31 5.87 5.87 4.5 7.7 0.84
Mexico 32 7.62 6.55 5.82 8.59 0.41
USA 50 7.56 7.41 6.03 8.02 0.47

Table 2: Summary statistics for the outcomemeasure by challenge. We add 1 to our cases per
million prior to logging, such that 0 is interpretable as no deaths. (There were no reported
COVID-19 deaths in the Solomon Islands as of August 31, 2021.)

Participants had access to mortality data as of November 16, 2020 (thus, as of a few
weeks prior to the launch of the MCs) and were asked to predict cumulative mortality as of
August 31, 2021, or about seven months into the future. Table 2 reports summary statistics
for the outcome — logged cumulative COVID-19 deaths per million — for each challenge.
Unsurprisingly, there is greater between- than within-country variation. See Appendix A on
data sources.

To provide context, the period when the Model Challenges were open to submission
was one when questions about vaccine availability (Basta & Moodie, 2021; Bokemper et al.,
2021; WHO, 2021; Wouters et al., 2021), efficacy beyond clinical trials (Baden et al., 2021;
Folegatti et al., 2021; Logunov et al., 2021; Mulligan et al., 2021; Polack et al., 2021; Voysey
et al., 2021), and public willingness to accept vaccination (de Figueiredo et al., 2021; Lazarus
et al., 2021; Solís Arce et al., 2021) were particularly salient. New variants (including Delta)
emerged only after predictions had been made. Thus, uncertainty over the trajectory of the
COVID-19 pandemic at the time of the challenges complicated the task for participants of
making out-of-sample predictions of mortality.

We also provided rich data to modelers that could be used as determinants of future
mortality. Substantively, we included candidates identified by broad literatures on possi-
ble determinants of how effective governments and societies may be in handling unexpected
crises, including public health crises, andmore broadly in how effectively they perform over-
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all. We also limitedmeasures to those that pre-dated the onset of Covid-19, which in practice
meant we systematically coded variables as of no later than the start of 2019. We viewed pol-
icy responses to Covid-19 as mediators (or mechanisms) that may have been conditioned
by preexisting social structures and political institutions. This constrained our modelers to
work with a common set of stable pre-existing determinants measured prior to the outbreak
of the pandemic.

We assembled approximately two dozenmeasures for each challenge, whichwe can cat-
egorize into three theoretically-relevant buckets of possible determinants of effectiveness in
responding to Covid-19: (1) state capacity and general institutional effectiveness, including
the extent of corruption andwhether the government is unitary or federal; (2) societal capac-
ity, including ethnic fractionalization and the extent of social trust; and (3) policy priorities,
including the presence of female leaders and the extent of polarization. In addition, we pro-
vided data on the health system (access to sanitation, for instance), data on the level of devel-
opment (GDP per capita), and data measuring what we called “epidemiological” variables,
which include GDP per capita, share of population over 65, respiratory disease prevalence,
hospital beds per capita, share of population living in urban areas, and population density.
For a discussion of the underlying logic of the variables we included, see Bosancianu et al.,
2020. As already noted, we also allowed modelers to submit their own variables and data
(although in practice, few chose to do so).

The MC platform became publicly available on December 1, 2020. Prior to and after
the launch of the MCs, we advertised to other social scientists — mainly political scientists
and to a lesser extent economists — via an array of solicitations using social media (Twit-
ter at the time) and professional listservs (the American Political Science Association, the
European Political Science Association, the Society for Political Methodology, Evidence in
Governance and Politics, and others). We also sent individual emails directed at political
science researchers at the top 100 research institutions globally and specifically in the USA,
Mexico, and India. To make the Model Challenges accessible to a wide range of scholars
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— including social scientists who do not typically engage quantitative methods — steering
committee members hosted a virtual hackathon-style workshop that demonstrated how to
use the platform and participate in the Model Challenges.

The public MC interface, depicted in Figure 1, was programmed in Shiny to be an inter-
active website. It allowed researchers to:

1. Choose a model challenge to enter (see Figure 1b).

2. Select up to three predictors and see graphics showing the performance of linear bi-
variate models for each predictor on COVID-19 mortality data as of November 16, 2020
(see Figure 1b).

3. Optionally upload new regressors (see Figure 1b).

4. Optionally change the functional form of the models to allow interaction, polynomial,
or custom model submissions (see Figure 1c).

5. Optionally predict parameter values for models, enabling submission of “parameter-
ized models" (see Figure 1d). (We refer to models that do not have parameters pro-
vided as “general models.”)

6. Provide a logic to explain the model (required). We encouraged researchers to de-
scribe why the set of predictors they chose mattered for the outcome, with references
to relevant literatures (see Figure 1e).

7. Submit models (see Figure 1f).

Prior to the launch, the Model Challenges were deemed exempt or received approvals
from the Institutional ReviewBoards (or equivalent bodies) at the six institutionswithwhich
the eight members of the Steering Committee were affiliated. Modelers provided informed
consent as well as identifying information as part of the submission process. Separate IRB
approvals or exemptions were received for the forecasting portion of the research, which did
not collect any personally identifying information.
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(a) (b)

(c) (d)

(e) (f)

Figure 1: Screenshots from the MC interface. Plots and reported statistics were presented
dynamically.
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2.2 Submissions

In all, 116 generalmodelswere submitted across the challenges. Figure 2 provides an overview,
including information about the functional form of the models, the number of predictors
used and the addition of predictors from outside the MC datasets, whether the models were
theoretically motivated — i.e., whether they included a theoretical argument for why their
selected variables should predict COVID-19 mortality or whether the submission stated that
the model had instead been generated using machine learning methods, whether the mod-
eler included references to existing literature to justify inclusion of selected variables (“has
model justification"), and the number of persons comprising each team of modelers. Fuller
descriptions of all models are provided in Appendix Table C.1.

The average team submitting consisted of between two and three persons, although
somewere as large as eight. Although nearly two-thirds of the models had an accompanying
theoretical motivation (meaning they were not generated using ML methods), we deemed
only about half of the entries to have included amodel justification (meaning they referenced
existing literature to justify inclusion of determinants). Most modelers used the data that we
had already assembled rather than providing their own. We received more crossnational
than country-level submissions and among countries, more for the USA.

Typically participating individuals participated in multiple challenges. In all, the four
MCs received 88 submissions from60different individuals based at 32 institutions in 10 coun-
tries (see Table B.1 for details). How shouldwe think about these numbers? The Fragile Fam-
ilies Challenge, which is the nearest academic equivalent we know of, received submissions
from 160 teams (Salganik et al., 2020), about double the MC number. In the case of the Frag-
ile Families challenge, however, modelers were givenmore than fourmonths (fromMarch 21
to August 1, 2017), compared to the six weeks we provided for submission. This comparison
suggests that our outreach was relatively successful given the compressed timeframe of the
project.
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Figure 2: Overview of features of general models from all four challenges, organized by chal-
lenge. The top panel (“Total”) reports the sum of the subsequent challenge-specific panels.
“Theoretical motivation" means that a substantive rationale for themodel was providedwith
the model. “Model justification" means referred to existing literature to explain reasoning.
“Is a predictivemodel”means that themodelwas selected by a (disclosed)machine-learning
algorithm.
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Given the heterogeneity of the teams, we have no way to relate modeller characteristics
to the quality of the models submitted. Some teams comprised multiple ranks — ranging
from undergraduate students to full professors — and some were cross-institution — in-
cluding large R1 research universities and small liberal arts colleges. The composite nature
of the submitting teams is itself an interesting aspect of the Model Challenges, but means we
can say little about whether seniority or institutional ranking related to model performance.

2.3 How the Forecasting Exercise Operated

The second stage of the tournament elicited expert forecasts. Forecasting has become in-
creasingly common across the social sciences (DellaVigna & Pope, 2018; DellaVigna et al.,
2019), offering a way to access expertise about social processes. For the MCs, we sought ex-
pert evaluations of statistical models, which is, informally, how they are routinely evaluated,
for instance via the peer review processes. In February and March 2021, we used the Social
Science Prediction Platform (https://socialscienceprediction.org/) to elicit expert forecasts
to evaluate the performance of the models earlier submitted to the MCs. We received 175
expert forecasts, 83 focused on how the crossnational models would perform on future data
and 92 on country-specific models.

We randomly assigned experts into two groups to elicit two sets of forecasts, which
we label “horserace” and “stacking” forecasts. In the horserace, experts saw a subset of six
randomly-selected general models that had been submitted to a given challenge. Experts
were asked to guess the probability that a model would be the most predictive in the set. In
the stacking exercise, forecasters were asked to allocate weights across models over a subset
of seven randomly-selected models.

The horserace forecast was designed to elicit the probability that a model would be the
most predictive out of a set of six models. The six models included: (1) five randomly-
selected models from among the theoretical (non-ML) general models submitted to a given
challenge and (2) the epidemiological model. The set of models that forecasters viewed
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varied across respondents; different respondents saw different subsets of the general models.

Forecasters read the following instructions for the “horserace" elicitation for the cross-
national challenge:

We now present six statistical models. Five were proposed by other researchers.
The sixth model contains only a set of standard epidemiological predictors.
We are interested in howwell these models explain the residual variance in mor-
tality. By this we mean the variance in mortality outcomes after accounting for a
set of controls selected using a machine learning algorithm. For details on these
controls and the selection process, click on or hover here.
Your task is to assign the probability to each model that it will explain the most
residual variance against the other models in the set in cumulative COVID-19
deaths per capita for all countries. You will be asked to do this for two future
points in time: 31 August 2021 and 31 August 2022. In other words, how likely
is it that each model will perform the best?

Please predict the probability that each model will explain the most residual
variance as of 31 August 2021 and 31 August 2022. As you are putting your pre-
diction on each model (i.e., the probability you assign to it), keep in mind that
entries in each column must range between 0 and 100; you should not enter neg-
ative probabilities. In principle, the probabilities in each column should sum to
100 but we will rescale them if they do not.
To inform your predictions, we show howmuch residual variance each model ac-
tually explained as of February 2021. Again, by residual variance we mean: how
much of the crossnational variance in COVID-19 deaths themodel explained over
and above that explained by the controls. Remember that you are not predicting
the residual variance itself but rather the probability that a model performs bet-
ter than the other five.
You can click on or hover over each model to view a summary of the logic that
was submitted with it.

The goal of the stacking forecasts was to elicit the stacking weights, analogous to those
that we estimate using Equation (H.1), over a subset of seven models. The models included:
(1) five randomly selected models among the theoretical (non-ML) general models for a
given challenge; (2) the Lasso-generated model for that challenge; and (3) the epidemiolog-
ical model. The set of models that forecasters viewed varied across respondents; different
respondents saw different subsets of the general models.
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The instructions that stacking forecasters read were similar to those for the horserace
but with appropriate adjustments in language. For details, see the text in Appendix K.

Figures 3a and 3b provide representative screenshots of the interface for a horserace
forecast and a stacking forecast.

(a) Horeserace forecast interface (b) Stacking forecast interface

Figure 3: Forecasting interface for two representative forecasts. Forecasters could hover over
the models to read a description of the logic behind each model (using the text submitted by
the modelers).

2.4 Analysis strategy: Aggregating and Evaluating Models and Forecasts

Having elicited models as well as forecasts for how well the models would perform against
future data, we then use statistical methods to combine the models into a meta-model and
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also to combine forecasts. Doing this generates material to assess howwell we do collectively
in producing and evaluating theories and to compare our collective, aggregate expertise with
the expertise of single individuals.

We generate an aggregate prediction for each challenge, using the submissions to evalu-
ate how much (if at all) predictive accuracy improves when we combine what were created
as individual, competing theories. Aggregation is implemented using a stacking procedure
that generates a meta-model based on all submitted models (Yao et al., 2021). The stack-
ing estimator allocates weights to the predictions of each constituent model to maximize the
meta-model’s predictive accuracy. For technical details, see Appendix H.1 By construction,
the aggregatedmeta-model is designed tomatch or exceed the performance of its constituent
models. To assess the performance of individual constituentmodels, we examine theweights
that each contributes to the meta-model. We find that most models contribute zero weight to
the meta-model, meaning that they effectively make no contribution to the aggregate model.
We interpret this to suggest that the models submitted by most modelers have no value in
our collective understanding of Covid-19 mortality.

We aggregate the forecasting results using two separate procedures to create: (1) a “rep-
resentative expert” model, based on the performance of the median forecast; and (2) a “wis-
dom of the crowds” model, based on the normalized average weight placed on a model by
experts. For technical details on both procedures, see Appendx I. Although these are not
exactly akin to the meta-model that is generated from the MC submissions, they similarly
use all the available data to bring together the collective expertise of forecasters.

With these various data and data transformations at hand, we are able to evaluate the
predictive accuracy of all the submittedmodels, all the forecasts, the aggregatedmeta-model

1To clarify, we fed early results of the stacking estimates of models into the “stacking" version of the forecast-
ing exercise, described above; in that version of forecasting, we asked experts to assign weights to submitted
models and we allowed them to see an initial stacking estimate as of February 2021 (see the text in the in-
structions to the “stacking” elicitation, reprinted above). The stacking results that we analyze in this paper are
based on the performance of the meta-model against mortality outcome data as of August 31, 2021 and then
June 20, 2022. The June 20, 2022 cutoff was used instead of the initially-planned August 31, 2022 because some
governments stopped collecting COVID-19 mortality data before the latter date.
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of the submittedmodels, and the two aggregations of the forecasts. Inwhat follows, we focus
on the crossnational challenge and present the results of the country-specific challenges in
Appendix F.

3 HowWell Did Models and Forecasts Perform?

We can compare submitted models against each other as regards their predictive accuracy.
But we also want to know how well human modelers do relative to what an algorithm pro-
duces. We thus benchmark the relative performance of individual models against two en-
tirely atheoretical statistical models predicting COVID-19 mortality: (1) one with prespeci-
fied “epidemiological" covariates, described above, and (2) a model selected by a Lasso al-
gorithm on the full set of assembled predictor variables. For details on the Lasso procedure,
see Appendix L.We use Lasso because it is a widely-used algorithm that selects predictors to
generate interpretable models (Tibshirani, 1996). These two benchmarks compare the spe-
cific theoretically-motivated expertise of social scientists with off-the-shelf atheoretical and
algorithmic predictions.

For the forecasts, we proceed analogously. We compare rankings of models that are
produced by the “horserace” forecasters to the “representative expert" and the “wisdom of
the crowds" models that emerge from the stacking forecasts. We proxy the former with the
median-performing stacking forecast and the latter with the average stacking weights made
by all forecasters.

3.1 Models, Forecasts, and Aggregated Models and Forecasts

The procedures we implemented produce six sets of outcomes. The comparisons are: (1)
how individual models perform in predictive accuracy against each other and against the
epidemiological and Lasso benchmarks; (2) how forecasts perform in predictive accuracy
against each other and against the representative expert and wisdom of the crowds bench-
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marks. Before getting to these main results, we walk the reader through results of the pre-
dictive performance of the individual submissions to the MC.

3.1.1 Predictive assessment

We begin with an evaluation of the performance of individual models that were submitted
to the general crossnational MC. Figure 4 depicts (on the x-axis) the leave-one-out predic-
tions arising from each crossnational general model that was submitted. On the y-axis we
plot the outcome: logged cumulative COVID-19 mortality per million as of August 31, 2021.
Each point represents one country. The measure of predictive accuracy is calculated using
Equation (G.1). A perfectly predictive model would have an R2

loo of 1, where higher val-
ues indicate greater predictive power. In Figure 4, models are ordered from best to worst
performing according to this metric.

Inspection of the data displayed in Figure 4 reveals that models vary substantially in
their predictive power. The R2

loo of the best model is 0.483 but only 0.171 for the median
model. Interpreting these metrics on an absolute scale is more challenging than making rel-
ative comparisons. Because the Lasso model is fit on all common predictors, it provides one
possible benchmark. On the one hand, the comparison between the Lasso-selected model
and the MC submissions should favor Lasso: Lasso targets predictive accuracy rather than
explanation, and we asked modelers to provide substantive explanations in their submit-
ted models. Providing substantive explanations might have affected how modelers thought
about predictive accuracy. On the other hand, the stated goal of the challenge was to pre-
dict future (August 31, 2021) COVID mortality. The modelers had this information when
formulating their models, but the Lasso was fit on data only through December 2020. In this
respect, the Lasso-selected model is disadvantaged relative to predictions made by humans.
Considering the advantage and disadvantage of the Lasso-selected benchmark relative to
the submissions is important when interpreting the Lasso benchmark. The R2

loo of the Lasso
model is 0.377 and it ranks fourth (out of 28 models) in predictive power. So three out of 28
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Figure 4: Evaluating: actual versus predicted deaths. Leave-one-out predictions of general
models submitted to the crossnational MC and observed COVID-19 mortality as of August
31, 2021. Facets are ordered from highest to lowest R2

loo. Dotted diagonal lines are 45 degree
lines and fitted lines are estimated by OLS and LOESS. Non-machine learning models are
theoretically-justified user submissions whereas machine learning models were generated
using a known (or reported) machine learning algorithm.

modelers out-perform the Lasso algorithm; these three comprise 10 percent of submissions.2
2We might think of these three modelers as akin to the superforecasters studied by Tetlock and Gardner,

2016. Most of ourmodelers, however, resembled standard experts, in that theywere not very good at forecasting
outcomes (Tetlock, 2005).
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Fully ninety percent of submissions did worse than an algorithm.

Table 3: Regression results for crossnational data (general models)

Authoritarian Govt. Capacity Perverse Dev.
Trust and Inequality

(Intercept) 5.70*** 5.88*** 5.61***
(0.10) (0.16) (0.11)

Health Access 1.14*** 0.72**
(0.10) (0.25)

Trust (Govt) -0.59***
(0.16)

Critical Media 0.24
(0.12)

Govt Effectiveness -0.34
(0.22)

Healthcare 1.62***
(0.23)

Gini 0.05
(0.16)

Govt Effectiveness2 -0.56***
(0.11)

Gini2 0.29**
(0.09)

HDI 0.54*
(0.24)

R2 0.51 0.51 0.42
Adj. R2 0.50 0.49 0.41
Num. obs. 166 144 162

*p < 0.05; **p < 0.01; ***p < 0.001

3.1.2 Contribution assessment

We next assess models by examining their contributions to the aggregate meta-model that is
created using stacking. The meta-model combines the most useful predictive features of in-
dividual models to generate a model that is by definition better than its single components.
To evaluate the value of each single model’s contribution to the meta-model, we consider
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its stacking weight. In Figure 5, we plot results of these assessments. Comparing Model
Challenge submissions of the horserace and stacking contests, we see that only a few mod-
els receive non-zero stacking weights. The stacking meta-model draws on only three con-
stituent models (“Trust in Authoritarian Government,” “Government Capacity and Social
Inequality," and ”Inequality in Pandemic Experiences") despite minimal differences in their
predictive accuracy, as measured by R2

loo.3 Despite these minimal differences, the stacking
estimates suggest that much of the collective predictive power of the models that we assess
is concentrated in only a few of the best performing. The skew of estimated stacking weights
towards the two top-performing models is striking.

Figure 5: Comparison of models selected by horserace and/or by stacking weights. Each
panel compares results using either individual MC submissions or forecasts. The models
included are among the top-five performers in either. The 95% confidence intervals are gen-
erated by bootstrapping. Models with build-in procedures for improving fit (e.g. “Trust in
Authoritarian Government”) that were not standard across models were not included in the
forecasting exercise.

This initial analysis of model selection yields two central findings. First, comparison
(horserace) and aggregation (stacking) prioritize different sets of models. Stacking heavily
favors very few models, putting much lower weights on the others. This occurs even when

3The weights estimated for each model are relative to the specific set of models evaluated.
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differences in predictive accuracy of individual models are minimal. Application of these
metrics in other contexts is necessary to establish the generality of these patterns, though
they hold across all four MCs.4 Second, we show that the average expert has very limited
ability to accurately identify the most predictive models. Even when experts are provided
baseline performancemetrics, as in the forecasting exercise, they do not do verywell. Our ed-
ucated guess is that the forecasting exercise that we designed required novel cognitive tasks.
Indeed, completion rates of 42.6 percent (horserace) and 30 percent (stacking) suggest that
forecasting the models’ out-of-sample predictive accuracy is challenging even for experts,
most of whom gave up before completing a forecast. Perhaps with practice, forecasting per-
formance would improve.

The results of the forecasting exercise show that, to the extent that traditional meth-
ods for organizing and synthesizing knowledge produced by an existing literature ask re-
searchers to identify the strongest arguments, there are grounds for skepticism about their
abilities to do so, at least if predictive accuracy serves as the primary evaluative criterion.
Expert forecasters were not very good at predicting which submissions to the MCs would
perform well (cf. Tetlock, 2005).

Finally, we turn to the results of six different aggregation methods, depicted in Figure 6.
We describe our metrics of model success in Appendix J. The rows depict two different ways
of assessing predictive performance. The top row evaluates predictions of observed out-
comes. The second normalizes bothmodel predictions and outcomes, providing information
about the correlations between them. The two columns show predictions for different time
periods. The left column presents estimates of predictions of cumulative COVID-19 mortal-
ity as of August 31, 2021, which is the prediction date that MC participants were asked to
use. The second column presents out-of-sample predictions, which are evaluated as of June
20, 2022.

We provide two benchmarks for each method, benchmarks which we have already dis-
4For the country-specific results, see Appendix E.
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Predicting logged cumulative deaths:
As of August 31, 2021

Predicting logged cumulative deaths:
As of June 20, 2022
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Figure 6: Comparison of predictive accuracy using different metrics. The top row of boxplots
shows predictive performances (R2

loo) of cumulative COVID-19 deaths per million and the
bottom row shows correlations between predictions and actual mortality. The left column
of boxplots assesses predictive accuracy on cumulative mortality as of August 31, 2021. The
right column evaluates out-of-sample predictions of cumulative mortality through June 2022
using the models selected on the basis of the August 31, 2021 data. The boxplots show the
interquartile range; whiskers are two standard deviations above and below the mean R2

loo.
Interquartile ranges and 95% confidence intervals are generated by bootstrapping.

cussed: the Lasso model selected on the basis of 2021 data to make out-of-sample 2022 pre-
dictions and the epidemiological model that uses what we consider standard predictors of
disease mortality.

After the benchmarks, the third and fourth measures of predictive performance — the
best- and median-performing models in the MC — follow directly from the discussion in
Section 3. Point estimates in the top row report the R2

loo of each model. The fifth prediction
examines the outcomes using the stacking meta-model. For purposes of out-of-sample pre-
dictions for 2022 in the righthand panel, we use the best, median, Lasso, epidemiological and
stacking models that were selected on the basis of the 2021 data. For all these, we construct
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a sampling distribution of model performance by bootstrapping the data (resampling 166
countries with replacement).

The remaining three methods, illustrated in Figure 6, aggregate expert forecasts. The
first metric examines the predictive power of the expert-favoredmodel. As we already docu-
mented in Figure 5, themodel that experts deemmost likely to be themost predictive does not
align with the model that is objectively found to be most predictive. The next two methods
aggregate expert stacking forecasts. The “representative expert" forecast depicts the median
aggregate stacking forecast. The final metric presents a “wisdom of the crowds" stacking
model that aggregates over forecasters’ stacking weights.

The main result that we highlight from Figure 6 is the consistent ability of the stack-
ing method to outperform all other metrics for measuring the success of either models or
forecasts. Indeed, it does better against both the top model from the MC or from the fore-
casts. While stacking by construction will always match the best constituent model, it will
not necessarily do so by a large margin, which is what we observe here.

When we evaluate models submitted to the Model Challenges, we find that the most
successful theoretically-motivatedmodels outperform a Lasso-selectedmodel. However, the
performance of the “typical" median-performing model is far worse than the Lasso-selected
benchmark. In Panel (a) of Figure 7, we compare the user-submitted models to a random
sample of 130,000 (5, 000× 26) models generated from the MC-provided data and Shiny ap-
plication. Specifically, we randomly sample permutations of three-predictor models from
the MC-provided data and then randomly select the functional form of the model (linear,
quadratic, or with interactions). For each model form, we randomly select the parameters to
include in the model (see Appendix M for the sampling algorithm). Results show that the
strongest of the submitted models clearly falls in the top percentiles of all possible models;
thus, eliciting models from experts provides an advantage over any algorithmic production
of models. However, many weaker submitted models do not performwell relative to the dis-
tribution of all possible models. In Panel (b), we compare the stacking prediction to stacking
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predictions generated from the identical 5000 random samples of 26 random three-predictor
models generated from the crossnational MC data. The stacking prediction outperforms all
of the predictions from a “null" distribution of stacking models (p ≈ 0). By aggregating
expert models via stacking, we can substantially enhance the predictive performance of a
set of models. Implementing an ensemble algorithm to combine features of multiple models
adds predictive value, documenting the utility of aggregation, and specifically of algorithmic
aggregation.

0

2

4

6

8

−1.0 −0.5 0.0 0.5 1.0

Single Model Rloo
2

D
en

si
ty

Type User Simulated

0

5

10

15

−1.0 −0.5 0.0 0.5 1.0

Stacking Model Rloo
2

D
en

si
ty

Type User Simulated

Figure 7: Panel (a) depicts the observed distribution of R2
loo’s and the density plot depicts

the distribution of R2
loo’s from our sample of 130,000 linear, quadratic, and interactive three-

predictor models using the commonMC dataset. Panel (b) shows how the predictive perfor-
mance of the stacking model compares to the predictive performance of randomly generated
stacking models. All models are crossnational general models.

To conclude our presentation of analytical results, we stress the superior performance
of the ensemble stacking method in predictive performance over the performance of models
produced by humans. But we caveat that humans do a better job than algorithms at produc-
ing models in the first place, a point we substantiate in the next subsection.

3.1.3 Explanatory assessment

We now consider the explanatory success of the best performing models. The models that
outperform Lasso are all theoretically motivated in the sense that their authors provided
reasons justifying the inclusion of each variable.
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To better understand the extent to which good performance reflects strong logics we
show the performance and discuss the logic of the top three performers, shown in Table 3.

The best performer, “Trust in Authoritarian Government," is a simple linear model that
uses three variables: a measure of trust in government, the presence or absence of a criti-
cal mass media, and access to sanitation. The text explaining the logic for this model states
that health access is a control variable and that a critical media is included (based on ob-
servation of the Chinese experience) to proxy data manipulation by government. In fact,
its explanatory power appears to derive from the control rather than from the media vari-
able, which does not enter into the model at a level that is statistically significant. While the
model appears motivated by logics in authoritarian settings, regime type does not enter in
the statistical model.

The second best performing model, “Government Capacity and Social Inequality," in-
cludes measures of government effectiveness, the quality of healthcare, and economic in-
equality; it uses two quadratic terms. The text predicted non monotonic relations for each
of these which are seen, in the expected directions, in both cases. The logic for non mono-
tonicity of effectiveness drew from a combination of a response logic (at the high end) and
a reporting logic (at the low end). The logic for inequality however drew more from early
Covid experiences than from general theory.

The third theoretically-motivated model, “Perverse Development," include two mea-
sures of general levels of development: access to sanitation and the human development
index (HDI). Both of these were intended, according to the logic supplied by the modeler,
to capture a country’s level of exposure to Covid risks and not to capture government re-
sponses. The model predicted higher levels of COVIDmortality in more developed contexts,
as is borne out in these models.

Strikingly these three best performing models do not in general rely heavily on well
defined political theories. Two drawmore from observations of Covid responses and one fo-
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cused on demographic risks (age distribution, mobility, density) rather than political logics.
In each case the logics provided were variable centered, focusing on why different variables
might matter, rather then outcome centered, focusing on how multiple variables combine to
form an explanation.

4 Lessons

We draw lessons regarding the pandemic itself, how to organize collective crowdsourced
aggregation processes of this form, and how to aggregate knowledge.

4.1 The Substantive Lessons

Did the Model Challenges produce substantive knowledge about COVID-19?

Our findings suggest that, broadly, institutional and government characteristics are not
strongly predictive of COVID-19 mortality rates: high and low mortality rates can be found
among both democracies and autocracies, for instance. Like other studies, the MCs also pro-
vide some support for the importance of social and political trust.

Evidence for the claim that many institutions were potentially compatible with more
successful policy responses to the unexpected COVID-19 crisis comes from the highly het-
erogeneous nature of the variables that modelers thought would be predictive of mortality
outcomes. In Appendix Figure D.1, we show a visual summary of the most common predic-
tors found in crossnational models.

Overall the most commonly-used variables are trust in others, trust in government, and
government effectiveness, and the single most common pairing of variables is trust in gov-
ernment and healthcare access — a coupling used, however, in only three of 26 submis-
sions. The frequency with which distinct submissions used common predictors is distin-
guishable from randomselection of predictors drawn from theMC-provideddataset (p-value
= 0.004), which suggests that participants considered common arguments from the literature
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or shared intuitionswhen constructing their models— but alsowide variability in how those
arguments were interpreted or which intuitions were drawn on.

The exception to this wide variability in possible determinants of mortality is trust.
Across the four challenges, 30 percent of models include measures of trust in society or trust
in government in predicting COVID-19 mortality. (For the country-specific data, see Ap-
pendix ??). If modelers agreed on anything, it was that trust could be an important predictor
of policy success. Even if variables measuring trust proved to be important, however, theMC
did not elicit very predictive theories of mortality outcomes.

The fact that institutional variables were not very predictive of mortality corrorborates
other research investigating contextual factors explaining COVID-19 outcomes. A study by
the COVID-19 National Preparedness Collaborators (2022) analyzes data from 177 coun-
tries and sublocations and reports that 44 percent of the variation in COVID-19 mortality
remains unexplained by demographic, health, economic, social, or political variables, mak-
ing COVID-19 “an epidemiological mystery” (COVID-19 National Preparedness Collabora-
tors, 2022, p. 1505). The single most important variables predicting mortality were, first, the
age-structure of the population and, second, an obesity index. Countries which had more
elderly and more obese experienced higher fatality rates among those infected.

Regarding social and political determinants, the COVID-19 National Preparedness Col-
laborators (2022) reports that trust in government and social trust appear to be especially
important, in particular because they appear to promote vaccine uptake. Other studies also
find that trust affects vaccine uptake (Adhikari et al., 2022; Sapienza & Falcone, 2022).

From the Model Challenge results, we find confirmation of these broader findings. We
also find that these features not only appear to have predictive power but that they stand out
when pitted against and combined with a wide variety of other measures.

More problematically, we do not see a distinctive theory emerging that accounts for why
some states performwell and others poorly. “Explanation" remains verymuch at the variable
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level. Modelers appear to have used the opportunity to include three variables as a way to
add multiple possible independent explanatory variables rather than as a way to propose a
theoretically integrated set of predictors.

4.2 Lessons for Crowdsourcing Social Scientific Research

As proof-of-concept, this exercise showed that a small group of unfunded but dedicated re-
searchers could rapidly assemble systematic data for many observations at multiple levels
and build a platform for users to interact with the data and submit comparable statistical
models.

What lessons can we draw for selection procedures and incentive strategies?

Our selection process demonstrated that a robust community of political scientists around
the world would voluntarily engage in the kind of mixed competition/collaboration that we
offered, and that some of them — although admittedly not many — would even contribute
additional data that they sourced themselves. We infer that members of our discipline are
willing and even eager to engage in large-scale collaborative enterprises, perhaps building
on the growth of co-authorship in political science in general (Grossman et al., 2025).

With that said, we cannot claim that the respondents represent the discipline. Given the
size of the discipline the numbers responding were relatively small, and they are also self
selected. Alternative procedures might include selection via a professional association.

The incentives we provided to take part were modest. Researchers would be contribut-
ing their insights to understanding a major societal challenge, which for some is reward. In
addition, we incentivized effort by offering coauthorship to those who submitted the most
predictive models, defined as models receiving non-zero weight (≥ 0.001) in the stacking
exercise. As a result, 25 of the 60 MC participants were offered coauthorship on the basis
of the merits of their models. Of those 25, 22 elected to serve as coauthors of the current
manuscript.
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The question of authorship-based incentivization raises ethical concerns. Our offer of
coauthorship on the basis of a specific output is consistent with other mega-studies in the so-
cial sciences, including Salganik et al. (2020). But is it ethical for coauthorship to be granted
on the basis of submission of a statistical model only? We believe that it is, provided con-
tributions are communicated transaparently. Fundamentally, contributors contributed the
models that were used in the analysis. In addition we did offer coauthors the opportunity to
review a completed draft of the paper prior to submission for publication, and we received
some feedback; this, we sought to incorporate. But the 22 coauthors had no other oppor-
tunities to participate in the Model Challenges. We do see risks however. We see potential
ethical issues arising when coauthorship is used to incentivize participants if (1) coauthor-
ship is provided when it is not merited or (2) coauthorship is given to some but not to oth-
ers who contribute equally (as might be the case if coauthorship were awarded by lottery).
In the MC case, the first concern is addressed by the fact that coauthorship depends on a
clear criterion for minimal but nevertheless a substantive contribution— producing a model
that generates a non-zero stacking weight — and the nature of each coauthor’s contribution
is communicated clearly via this article’s use of the Contributor Roles Taxonomy (CRediT)
(from https://credit.niso.org/). A subtle form of the second concern arises because, al-
though in our case there is no lottery component, there is a form of interdependency in that
whether a contribution generates a positive weight depends on which other models happen
to be provided. That introduces a measure of uncertainty that does not depend solely on
the intrinsic properties of the statistical model submitted. But this is not very different than
any other research setting, where every theory and every model is in implicit or even explicit
competition with every other theory and every other model, and where we always evaluate
the performance of each relative to the others in the field. The random element in the MCs is
not much different than the randomness that characterizes all our professional engagements.
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4.3 Lessons for Aggregating our Knowledge

The best models submitted to theMCs outperform a Lasso-selected benchmark and are over-
represented among top performers, as shown in the results of the simulation depicted in
Figure 7. To a skeptic of social science, it may not be obvious that social scientists are capable
of generating highly predictive models — that, in other words, they possess the ability to
accurately explain the social world. However, the sharp drop-off in performance between the
best and median models, combined with experts’ limited abilities to accurately identify the
best-performing models (Figure 5), is cause for concern. If the development of knowledge
depends on the abilities of experts to assess the merits of multiple empirically-supported
claims, social scientists should address issues of aggregation more systematically.

That experts do far less well than algorithms in model evaluation and aggregation is
perhaps surprising. Success in combining intuitions generated by many scholars to explain
a common outcome is often viewed as a subtle art requiring deep expertise and insight. Our
analysis finds that a statistical algorithm in fact performs better at this in our context. One
possible implication of our findings is that scholars could profitably devote more resources
to systematizing the models characterizing their explanations so that these can be aggre-
gated using statistical methods. Ensemble procedures seem likely to produce more credible
meta-models than informal reasoning, and social scientists do better when their expertise is
combined than almost any of them do alone. Of course, predictive accuracy is only one eval-
uative criterion for social scientific explanations. Yet, it is one for which explanations can be
evaluated systematically and, as we demonstrate, is easily amenable to different approaches
to comparison and aggregation.

Several aspects of our findings should, we believe, be developed in future work. First,
the MCs focused on a public health outcome. Disease mortality may well have been a rela-
tively unfamiliar outcome to many political scientists. Studying the quality of explanations
and social scientists’ evaluations of explanations for outcomes of longer-standingdisciplinary
interest will be important to assess the robustness of our findings. Second, lower response
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rates in our forecasting task relative to more common forecasting tasks around treatment
effects (DellaVigna & Pope, 2018) suggest that social scientists are unaccustomed to evalu-
ating the predictive success for explanations of outcomes. To the extent that this is a useful
evaluative criterion for explanations in the social sciences, probing these challenges— or cul-
tivating this ability — seems important. Finally, one may worry that by limiting the number
of variables to three or by requiring provision of a verbal explanation of a model, we disad-
vantaged participants relative to the Lasso-selected benchmark or to the stacking aggregation
method. While our discussion has highlighted other advantages of modelers relative to al-
gorithmic approaches, evaluating the sensitivity of our findings to these specific constraints
will be important moving forward.

Beyond the MC setting, several features of the procedures we implemented may be
worth replicating in more established political science topical domains. In particular, there
is a need to evaluate competing theories on common samples using commonmeasures of an
outcome. The algorithmic tools that we employ — model comparison based on predictive
power andmodel stacking to generate an aggregate prediction— can easily be implemented
in such settings. These forms of model assessment and combination harness the aggregate
inputs of social scientists, documenting the strength of collective over individual knowledge.
We end with the conclusion that we would all benefit from settings that systematically com-
bined our ideas.
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A Sources of Data on Covid Mortality

The outcome for all challenges is logged COVID-19 deaths per million residents on August
31, 2021. We collect COVID-19 outcome data from the following sources:

• Crossnational challenge: European Centre for Disease Prevention and Control (ECDC),
accessed November 16, 2020; March 3, 2022; and October 18, 2022.

• India challenge: Government of India (https://www.mygov.in/corona-data/covid19-sta
tewise-status/), accessed November 16, 2020; March 23, 2021; September 7, 2021; March
2, 2022; and October 18, 2022.

• Mexico challenge: Government of Mexico (https://coronavirus.gob.mx/datos/#Down
ZCSV), accessed November 16, 2020; March 23, 2021; September 8, 2021; March 4, 2022;
and October 2, 2022.

• United States challenge: The COVID Tracking Project at The Atlantic (https:/covidtrac
king.com/data/download/all-states-history.csv), accessed November 16, 2020 and
March 23, 2021; TheCOVID-19 Response at the Centers for Disease Control and Prevention
(CDC) (https://data.cdc.gov/Case-Surveillance/United-States-COVID-19-Cases-and-D
eaths-by-State-o/9mfq-cb36), accessed September 14, 2021; March 3, 2022; and October
18, 2022.

Figure A.1 shows the outcome measure for the crossnational challenge. The left panel
shows the evolution of logged deaths per million over the relevant period. The two vertical
lines denote (1) the data shown to modelers during the Model Challenge and (2) the date
when we evaluate the predictions made by the models they submitted (August 31, 2021).
Each horizontal line represents a country. To illustrate the changes in COVID-19 mortality
that participants predicted, we depict the three countries at the 10th, 50th, and 90th percentiles
in (percent) change in COVID-19mortality betweenNovember 16, 2020 andAugust 30, 2021.
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Figure A.1: Outcome data for the crossnational challenge. The left panel depicts the growth
of logged cumulative COVID-19 deaths per million. Each line represents a country. Vertical
lines reflect (1) the data provided in the MC and (2) the main outcome, mortality as of Au-
gust 31, 2021. The right panel shows changes in the outcome betweenNovember 16, 2020 and
August 31, 2021 for countries at the first decile (Spain), median (Romania), and top decile
(Uganda).

The countries are Spain, Romania, and Uganda, respectively.

B Distribution of participants across challenges

Challenge Participants Institutions Countries
Crossnational 42 21 9
India 18 6 5
Mexico 15 6 3
USA 29 15 6
All 60 32 10

Table B.1: Tally of model challenge submissions and participants (raw numbers). “All” may
be less than the sum of the four challenges because some modellers submitted to multiple
challenges.
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C Submitted models

Table C.1 provides summaries of all submittedmodels. They are ranked, within challenge, by
theR2

loo metric (evaluated for general models using leave-one-out predictions; see Appendix
G).

Table C.1: Model composition and performance by challenge

Model Name Variables included and functional form specified R2
loo Stacking

weight

Crossnational, parameterized

1 Trust in Authoritarian Government deaths_per_mio_log = 4.75 + 0.9 * acc_sanitation - 1.25 * trust_gov 0.141 0.437

2 Populism and Social Trust deaths_per_mio_log = 4.8 + 0.9*electoral_pop +

0.9*electoral_pop*trust_people + 0.75*life_exp_2017

-0.9*trust_people

0.097 0.155

3 Liberalism, Capitalism, and Media

Independence

deaths_per_mio_log = 5 + 0.7*property_rights -0.7*trust_gov

-0.1*vdem_mecorrpt

0.008 0.000

4 Social and Institutional Trust deaths_per_mio_log = 4.5 -0.5*gov_effect + life_exp_2017

-0.5*trust_people + 0.5*trust_people*gov_effect

-0.079 0.000

5 Government Capacity and Development deaths_per_mio_log = 5 + 0.1*gdp_pc -0.5*gov_effect +

0.5*gov_effect^2 -0.9*trust_gov

-0.121 0.000

6 Government Capacity and Social

Inequality

deaths_per_mio_log = 4 + 0.2*gini + 0.15*gini^2 -0.6*gov_effect

-0.2*gov_effect^2 + 2*healthcare_qual

-0.356 0.168

7 Perverse Development deaths_per_mio_log = 4 + 0.4*acc_sanitation + 0.6*hdi -0.369 0.000

8 Health Equality deaths_per_mio_log = 4 + 1.5*acc_sanitation +

0*acc_sanitation*respond_index -0.1*health_equality +

0*health_equality*acc_sanitation +

0.01*health_equality*acc_sanitation*respond_index +

0*health_equality*respond_index + 0*respond_index

-0.390 0.168

9 Competitiveness of Executive Recruitment deaths_per_mio_log = 1.46*acc_sanitation + 0.85*acc_sanitation^2

-0.14*urban -0.04*urban^2 + 1.37*xrcomp_2018

-0.946 0.000

10 Development and Trust deaths_per_mio_log = 4 + 1*hdi + 0.5*hdi*trust_people +

0.25*share_older -0.5*share_older*hdi +

0.25*share_older*hdi*trust_people -1*share_older*trust_people

-0.55*trust_people

-0.993 0.000

11 Pandemic Readiness deaths_per_mio_log = 9 -2*acc_sanitation + 1.4*infection

-1.2*trust_gov

-2.201 0.058

12 Social and Political Stability deaths_per_mio_log = 1.5 -0.2*gini -0.3*pr -0.1*trust_people +

0.1*trust_people*gini + 0.1*trust_people*pr

-5.581 0.000

13 Polarization and Populism deaths_per_mio_log = 1*electoral_pop -0.5*polar_rile +

0.5*trust_people

-7.557 0.000
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Table C.1: Model composition and performance by challenge (continued)

ID Model Functional Form R2
loo Stacking

Weight

14 Language and Culture deaths_per_mio_log = 3.5 + 1.5*idv + 0.05*inflectional_ftr -1322.027 0.013

India, general

1 Health Sector Capacity deaths_per_mio_log∼ β0 + β1*pandemic_prep + β2*pct_poor +

β3*pandemic_prep*pct_poor + β4*hosp_beds_pc +

β5*pandemic_prep*hosp_beds_pc + β6*pct_poor*hosp_beds_pc +

β7*pandemic_prep*pct_poor*hosp_beds_pc

0.363 0.451

2 Interactions and Political Pressures deaths_per_mio_log∼ β0 + β1*gdp_pc + β2*urban_pct +

β3*election_margin

0.306 0.231

3 Urbanisation and Healthcare deaths_per_mio_log∼ β0 + β1*gdp_pc +

β2*public.health.total.budget.2015 + β3*urban_pct

0.301 0.034

4 Business and Density deaths_per_mio_log∼ β0 + β1*minority_pct + β2*gdp_pc +

β3*urban_pct

0.295 0.000

5 GDP, TB Prevalence, and Anti-immigration

Attitudes

deaths_per_mio_log ∼ β0 + β1*pct_anti_immig + β2*tb_per_100k

+ β3*gdp_pc

0.204 0.000

6 Minority Representation and Urbanization deaths_per_mio_log∼ β0 + β1*reserve_proportion +

β2*urban_pct + β3*reserve_proportion*urban_pct

0.094 0.260

7 Government Capacity deaths_per_mio_log∼ β0 + β1*average_events_per_state +

β2*leader_experience

-0.145 0.000

India, parameterized

1 Business and Density deaths_per_mio_log = 4.7 + 0.2*gdp_pc -0.2*minority_pct +

0.5*urban_pct

-1.668 0.945

2 Urbanisation and Health Care deaths_per_mio_log = 5.35 + 0.41*gdp_pc

-13*public.health.total.budget.2015 + 0.44*urban_pct

-2.021 0.000

3 Health Sector Capacity deaths_per_mio_log = 4.3 + 0.4*hosp_beds_pc +

1.8*pandemic_prep + 2*pandemic_prep*hosp_beds_pc +

1.5*pandemic_prep*pct_poor +

2.5*pandemic_prep*pct_poor*hosp_beds_pc -0.35*pct_poor

-0.25*pct_poor*hosp_beds_pc

-2.154 0.055

4 Minority Representation and Urbanization deaths_per_mio_log = 4.2 -0.6*reserve_proportion

-0.6*reserve_proportion*urban_pct + 0.2*urban_pct

-3.267 0.000

5 Interactions and Political Pressures deaths_per_mio_log = 4.25 + 0.05*election_margin + 0.4*gdp_pc +

0.4*urban_pct

-3.684 0.000

Mexico, general

1 Political Leadership, Poverty, and Obesity deaths_per_mio_log∼ β0 + β1*election_margin + β2*pct_poor +

β3*obesity

0.371 0.000

2 Social Trust and Catholicism deaths_per_mio_log∼ β0 + β1*pct_catholic + β2*election_margin

+ β3*trust_people + β4*pct_catholic*trust_people

0.347 0.360
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Table C.1: Model composition and performance by challenge (continued)

ID Model Functional Form R2
loo Stacking

Weight

3 Trust, Poverty, and TB Prevalence deaths_per_mio_log∼ β0 + β1*pct_poor + β2*trust_people +

β3*tuberc_cases

0.345 0.072

4 Poverty, Electoral Competitiveness, and

Public Goods

deaths_per_mio_log ∼ β0 + β1*hosp_beds_pc + β2*pct_poor +

β3*hosp_beds_pc*pct_poor + β4*election_margin

0.040 0.000

5 Government Experience deaths_per_mio_log∼ β0 + β1*pandemic_prep +

β2*leader_experience

-0.103 0.000

6 Interactions and Political Pressures deaths_per_mio_log∼ β0 + β1*gdp_pc + β2*election_margin +

β3*urban_pct

-0.300 0.000

7 Investment Inequality deaths_per_mio_log∼ β0 + β1*hosp_beds_pc + β2*gini +

β3*hosp_beds_pc*gini + β4*health_expendpc +

β5*hosp_beds_pc*health_expendpc + β6*gini*health_expendpc +

β7*hosp_beds_pc*gini*health_expendpc

-0.504 0.000

Mexico, parameterized

1 Social Trust and Catholicism deaths_per_mio_log = 7.6 + 0.19*election_margin -0.08*pct_catholic

-0.197*pct_catholic*trust_people + 0.27*trust_people

0.619 1.000

2 Poverty, Electoral Competitiveness, and

Public Goods

deaths_per_mio_log = 6.7 + 0.2*election_margin +

0.3*hosp_beds_pc + 0.25*hosp_beds_pc*pct_poor -0.05*pct_poor

-4.756 0.000

3 Investment Inequality deaths_per_mio_log = 6.7 + 0.01*gini -0.01*gini*health_expendpc +

0.2*health_expendpc + 0*hosp_beds_pc + 0.35*hosp_beds_pc*gini

+ 0.05*hosp_beds_pc*gini*health_expendpc

-0.3*hosp_beds_pc*health_expendpc

-5.074 0.000

4 Interactions and Political Pressures deaths_per_mio_log = 6.6 + 0.15*election_margin + 0.1*gdp_pc +

0.25*urban_pct

-5.186 0.000

USA, general

1 Inequality and Polarization deaths_per_mio_log∼ β0 + β1*party_leg_right + β2*pop_density

+ β2*gini + β3*party_leg_right*gini + β4*pop_density*gini

0.549 0.389

2 Density, Inequality, and Religiosity deaths_per_mio_log∼ β0 + β1*gini + β2*pct_religious +

β3*pop_density + β4*gini^2 + β5*pct_religious^2 +

β5*pop_density^2

0.501 0.259

3 Inequality and Capacity deaths_per_mio_log∼ β0 + β1*gini + β2*urban_pct +

β2*hosp_beds_pc

0.500 0.328

4 Right Party Power and Income Inequality deaths_per_mio_log∼ β0 + β1*gini + β2*party_leg_right +

β3*pop_density

0.487 0.000

5 Religiosity deaths_per_mio_log∼ β0 + β1*pop_density + β2*pct_religious +

β3*gini

0.429 0.000

6 Women in Leadership deaths_per_mio_log∼ β0 + β1*pop_density +

β2*percentage_of_women + β2*gini

0.363 0.000
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Table C.1: Model composition and performance by challenge (continued)

ID Model Functional Form R2
loo Stacking

Weight

7 Ethnicity, Inequality, and Healthcare

Capacity

deaths_per_mio_log ∼ β0 + β1*gini + β2*hosp_beds_pc +

β3*ethnic_frac_score

0.344 0.000

8 Social Contact deaths_per_mio_log∼ β0 + β1*pct_religious + β2*pct_poor +

β3*pop_density

0.332 0.000

9 Institutional and Social Trust deaths_per_mio_log∼ β0 + β1*pop_density + β2*trust_gov +

β3*gini

0.325 0.000

10 Community Equality and Trust deaths_per_mio_log∼ β0 + β1*gini + β2*civil_society +

β3*trust_people

0.317 0.000

11 Religion, Economic Inequality, and

Minority Status

deaths_per_mio_log ∼ β0 + β1*pct_religious + β2*minority_pct +

β3*gini

0.299 0.000

12 Inequality and Urbanity deaths_per_mio_log∼ β0 + β1*urban_pct + β2*gini 0.227 0.000

13 Poverty and Social Exclusion deaths_per_mio_log∼ β0 + β1*minority_pct + β2*pct_poor +

β2*gini

0.203 0.000

14 Institutional Trust and Race deaths_per_mio_log∼ β0 + β1*trust_gov + β2*pop_density +

β3*minority_pct + β4*minority_pct^2

0.201 0.024

15 Vaccination Coverage deaths_per_mio_log∼ β0 + β1*s_diffs + β2*share_older +

β3*Influenza_vaccination_age_65*share_older

0.020 0.000

16 Population Health, Religiosity, and

Compliance

deaths_per_mio_log ∼ β0 + β1*pct_religious +

β2*resp_disease_prev + β3*share_older

-0.085 0.000

17 Government Experience deaths_per_mio_log∼ β0 + β1*leader_experience +

β2*corrected_score

-0.121 0.000

USA, parameterized

1 Vaccination Coverage deaths_per_mio_log = 7.3

-0.31*Influenza_vaccination_age_65*share_older -0.23*s_diffs

-0.17*share_older

-0.102 0.974

2 Inequality and Polarization deaths_per_mio_log = 6 + 0.5*gini + 0.5*party_leg_right

-0.4*party_leg_right*gini + 0.4*pop_density -0.2*pop_density*gini

-5.498 0.026

3 Social Contact deaths_per_mio_log = 6.3 + 0.1*pct_poor + 0.25*pct_religious +

0.5*pop_density

-5.555 0.000

4 Population Differences deaths_per_mio_log = 6.3 + 0.3*gini + 0*gini^2 + 0.3*pct_religious

-0.1*pct_religious^2 + 0.2*pop_density + 0.01*pop_density^2

-6.166 0.000

5 Inequality and Urbanity deaths_per_mio_log = 6.1 + 0.6*gini + 0.1*urban_pct -8.265 0.000

Notes: Lasso and Epidemiological models not shown in this table; displayed in Tables L.1 and L.2, respectively.

The Lasso model receives positive stacking weight in the India and Mexico general challenges.
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Figure D.1: Pairwise combinations of variables submitted to the crossnational MC. The
lower left quadrant shows social and political variables provided in the MC. The upper
right quadrant shows other variables provided in the MC. Variable definitions available at
https://osf.io/pgydn.

D Pairwise Combinations of Predictors

Figure D.1 shows a visual summary of the most common predictors found in crossnational
models.

It first orders political and social variables and then orders other — mostly health and
demographic — variables, all by how often they appear in submissions. Color coding indi-
cates how frequently pairs of variables were entered together. The data depicted in the figure
shows that

viii

https://osf.io/pgydn


Figure D.2 depicts the pairwise combinations of predictors in the country-specific chal-
lenges analogous to Figure D.1. See the discussion of Figure D.1 in the main text for infor-
mation on the interpretation of these plots.
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(c) Variable combination for the USA.

Figure D.2: Pairwise combinations of variables submitted to the country-specific challenges.

E Stacking and Model Selection Results by Country

We now report the country-specific results of our model selection exercise. Figures E.1-E.3
are analogous to Figure 5 in the main text. Note that we only show general model results for
the country-specific challenges, as before.
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Figure E.1: Model selection using four methods for the general models from India.
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Figure E.3: Model selection using four methods for the general models from the US.
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Figure F.1: Prediction aggregation metrics for general models for India.

F Aggregation Results for Other Challenges

We now report the results of aggregating across the three country-specific challenges. Fig-
ures F.1-F.3 report the full results for each challenge analogous to 6 in themain text. Note that
we only show results for the general models from the country-specific challenges as before.

G Measure of Predictive Accuracy

We use a metric of the predictive accuracy that resembles theR2 but is evaluated (for general
models) using leave-one-out predictions. We do this even though general models make pre-
dictions about future (out-of-sample) COVID-19 mortality; the reason is that parameters of
general models are estimated using the (out-of-sample) August 2021 outcome data. The use
of out-of-sample predictions is unnecessary for the parameterized models, where modellers
also predicted the values of these parameters.

We label the metric that we use R2
loo. It is generated via Equation G.1. It is a rescaling of

mean squared error (MSE) but offers a more easily interpretable scale. AR2
loo of 1 constitutes

xiii



Predicting logged cumulative deaths:
As of August 31, 2021

Predicting logged cumulative deaths:
As of June 20, 2022

Level
S

core

Best
single

Median
single

Epi
model

Lasso
selected

Stacking Expert
favored

Rep.
expert

Wisdom
of

crowds

Best
single

Median
single

Epi
model

Lasso
selected

Stacking Expert
favored

Rep.
expert

Wisdom
of

crowds

−1.00

−0.80

−0.60

−0.40

−0.20

0.00

0.20

0.40

0.60

0.80

1.00

−1.00

−0.80

−0.60

−0.40

−0.20

0.00

0.20

0.40

0.60

0.80

1.00

Strategy Lasso−selected MC Forecast

Figure F.2: Prediction aggregation metrics for general models for Mexico.
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Figure F.3: Prediction aggregation metrics for general models for the USA.
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a perfect prediction and aR2
loo of 0means amodel does no better than a prediction of themean

outcome for all units.5 We also compare the correlation between leave-one-out predictions
and observed outcomes, which abstracts from the levels (or intercepts) of the predictions.
This is particularly useful for evaluating parameterized models when predicted intercepts
depart substantially from realized COVID-19 mortality.

In the following expressions, letxi denote a vector of explanatory variables for unit i and
f̂k
−i the predictive model k trained on data that excludes unit i. Then the leave-one-out pre-
diction for unit i under model k is ŷik = f̂k

−i(xi). The (squared) error for unit i produced by
outcome k is (yi−yi)

2. Ourmeasure of accuracy combines these errors across units according
to:

R2
loo,k = 1−

∑N
i=1(ŷik − yi)

2∑N
i=1(yi − yi)2

(G.1)

H Model Stacking

The stacking estimator takes the (leave-one-out) out-of-sample predictions of each model
as inputs. It identifies the optimal weighting of these predictions, and selects a vector of
non-negative weights summing to 1, w, to minimize the loss function:

L(w) =
N∑
i=1

(
yi −

K∑
k=1

wkŷik

)2

Intuitively, a vector of weights w placed on models, results in an aggregated prediction for
the unit ystackingi (w) =

∑
k wkŷik and loss is assessed by how far the vector ystacking(w) is from

the observed outcomes y. We estimate the stacking weights employed in Figures 5 and 6
using Equation (H.1).

5Values below 0 are possible if models perform worse than this. The measure has no lower bound.
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w = argmin
w

N∑
i=1

(
yi −

K∑
k=1

wkŷik

)2

s.t. wk ≥ 0 ∀ k,
K∑
k=1

wk = 1 (H.1)

As above, ŷik refers to the ŷlooik for all general models. Larger weights provide a measure
of the contribution of a model to an aggregate model and are taken here as a measure of
unique predictive ability within the set of k models provided.

I Aggregating Forecasts

I.1 Representative expert

As with the algorithmic stacking models, each expert’s weighting of models generates an
aggregate model with a prediction for unit i by expert j of:

ŷji =
∑
k

ŵj
kŷ

loo
ik (I.1)

We use the leave-one-out designation here to remind readers that forecasts were only elicited
over general models where we employ the leave-one-out predictions in all metrics of predic-
tion accuracy. We can plug this into Equation (J.1) to measure the success of an expert’s
stacking model. The representative expert’s aggregate model set is defined by the elicited
weights such that:

wr = {wj|vj = median(vh)h∈H} (I.2)

where H is the set of forecasters assigned to the stacking elicitation.

I.2 Wisdom of the crowds

To construct a wisdom of the crowds aggregate forecast, for each model set, we calculate
the normalized average weight placed on a model by experts. As such, for model set c, we
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calculate:

wc
k =

∑
j ŵ

j
k∑

k

∑
j ŵ

j
k

(I.3)

This yields model predictions given by:

ŷci =
∑
k

wc
kŷ

loo
ik (I.4)

J Defining Model Success for Individual Models

We focus on two measures of model success, one which examines levels of predicted and ac-
tual outcomes and one which examines scores of predicted and actual outcomes. Our anal-
ysis of levels considers ŷik and yi. Our analysis of scores examines Z-score transformations
of ŷik and yi, which we will denote with the superscript Z (i.e., ŷZik and yZi ).

Our metrics of model success are given by:

vk = 1− α

∑
i(ŷik − yi)

2∑
i(yi − yi)2

(J.1)

where α is a scale parameter and yi denotes the mean of yi.

For the level approach, we evaluate (J.1) by setting α = 1 and using our (raw) predic-
tions ŷik and (raw) observed outcomes yi. We refer to this measure as a R2

loo. For general
models, in the absence of LOO prediction, vk = R2 and, as such, vk ∈ [0, 1]. With LOO pre-
diction, vk ≤ R2 since (ŷlooik − yi)

2 ≥ (ŷallik − yi)
2, where ŷallik is the model fit on all observations

(including i). When vk measures the R2
loo, vk ∈ (−∞, 1]. Higher values of vk indicate more

accurate predictions.

For the score approach, we evaluate (J.1) by setting α = 1
2
and using our normalized

predictions ŷZik and normalized outcomes yZi . This measure is equivalent to the correlation

xvii



between ŷik and yik. Therefore, for the score approach, vk ∈ [−1, 1]. Prediction accuracy is
again increasing in vk. Note that ŷik are predictions of yik. Thus, a negative correlation — no
matter how strong — indicates lower accuracy than a correlation of zero in this setting.

K Information on the Stacking Forecast

Experts randomized into the stacking forecast read the following instructions:

We now present seven statistical models. The first five were proposed by other re-

searchers. The sixth model contains epidemiological predictors and the last model a set

of predictors selected by a machine learning algorithm. Click on or hover here for more

details on the selection process.

Your task is to provide a weight for each model. You should assign larger weights to

models if you would pay relatively more attention to the predictions of those models when

forming an overall prediction.

For example, you might trust the predictions from only one model and put all weight

on that model, or you might think the best prediction comes from a weighted average of the

predictions of three or four different models.

The outcome is cumulative COVID-19 deaths per capita for all countries at two

future points in time: 31 August 2021 and 31 August 2022.

Please enter weights for each model below. You should assign larger weights to models

if you would pay relatively more attention to the predictions of those models when forming

an overall prediction.

As you are assigning weights, keep in mind that your entries in each column must

range between 0 and 100; you should not enter negative weights. In principle, the

weights in each column should sum to 100 but we will rescale them if they do not.

To inform your predictions, in the first column we report the weight assigned to each

model when they are combined via a stacking model with data from February 2021.

Stacking is a statistical procedure that weights each model by its contribution when com-
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bined with the others in the set to generate a more accurate prediction. Your task is similar

except that it relies on your expertise rather than an algorithm. You can click on or hover

over each model to view a summary of the logic that was submitted with it.

L Information on the Creation of the Lasso Benchmark, Epidemiological

Models

The following variables were selected by the Lasso procedure for each challenge:

Challenge General Form Parameterized Form
Crossnational deaths_per_mio_log ∼ acc_sanitation + health-

care_qual
deaths_per_mio_log = 3.9815 +
0.5718×acc_sanitation + 0.588×healthcare_qual

India deaths_per_mio_log ∼ gdp_pc + hosp_beds_pc +
pct_poor + reserve_proportion + urban_pct

deaths_per_mio_log = 4.3503 + 0.0382×gdp_pc
+ 0.278×hosp_beds_pc -0.0649×pct_poor -
0.4854×reserve_proportion + 0.2783×urban_pct

Mexico deaths_per_mio_log∼health_expendpc+pct_poor+
pct_tertiaryemp

deaths_per_mio_log = 6.6278 +
0.12×health_expendpc - 0.1461×pct_poor +
0.0813×pct_tertiaryemp

USA deaths_per_mio_log ∼ gini + hosp_beds_pc +
pct_religious + pop_density + urban_pct

deaths_per_mio_log = 6.2735 + 0.2325×gini +
0.2491×hosp_beds_pc + 0.1534×pct_religious +
0.2374×pop_density + 0.2517×urban_pct

Table L.1: Lasso models for each challenge. The parameterized formwas fit on outcome data
as of November 16, 2020.

Table L.2 reports the epidemiological models used as a benchmark in each challenge.

M Simulating Model Selection by Machine

We extend the analysis from Figure 7 to the other challenges in this section. First, we outline
our algorithm for sampling of models. The sampling strategy parallels the format of theMCs
and the Shiny app that was provided to modelers. For each challenge we:

1. Randomly sample three predictors from the MC predictors.

2. Randomly select one type of model: polynomial (quadratic), interaction, or neither,
each with probability 1/3.

3. For the selected type of model, we follow the Shiny menu of options to select terms
to be excluded from the statistical model. We do so by generating a Bernoulli random
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Data General Form Parameterized Form
Crossnational deaths_per_mio_log ∼ gdp_pc + share_older +

resp_disease_prev + hosp_beds_pc + precip + urban
+ pop_density_log

deaths_per_mio_log = 4.316 + 0.1928×gdp_pc +
0.8683×share_older + 0.1824×resp_disease_prev
- 0.3077×hosp_beds_pc -0.2592×precip +
0.2703×urban -0.1345×pop_density_log

India deaths_per_mio_log ∼ gdp_pc + share_older +
resp_disease_prev + hosp_beds_pc + precip + ur-
ban_pct + pop_density

deaths_per_mio_log = 4.3110 + 0.5937×gdp_pc
+ 0.1085×share_older -0.4212×resp_disease_prev
+ 0.2625×hosp_beds_pc -0.1048×precip + 0.1679
×urban_pct + 0.0446×pop_density

Mexico deaths_per_mio_log ∼ gdp_pc + share_older +
irag_rate + hosp_beds_pc + precip + urban_pct +
pop_density

deaths_per_mio_log = 6.6278 + 0.0593×gdp_pc
+ 0.0869×share_older + 0.1166×irag_rate
+ 0.1416×hosp_beds_pc + 0.0681×precip +
0.1717×urban_pct -0.1373×pop_density

USA deaths_per_mio_log ∼ gdp_pc + share_older +
resp_disease_prev + hosp_beds_pc + precip + ur-
ban_pct + pop_density

deaths_per_mio_log = 6.3422 -0.1673×gdp_pc +
0.0522×share_older -0.1489×resp_disease_prev
+ 0.3919×hosp_beds_pc + 0.1217×precip +
0.2476×urban_pct + 0.212×pop_density

Table L.2: The epidemiological models used as a benchmark in each challenge. The param-
eterized form was fit on outcome data as of November 16, 2020.

variable (with p = 0.5) for each term and including the term if the draw takes the value
1 and omitting the term if the draw takes the value 0.

Following this algorithm,we sample 5000×Mc (Mc is the total number of user-submitted
models in each challenge c) models per challenge. Figure M.1 shows the performance of the
randomly generated models relative to the user submitted models in each MC. Table M.1
presents the corresponding summary statistics for the two types of models per MC. Figure
M.2 compares the performance of the stacking model estimated on the user submitted rel-
ative to the stacking model estimated on equivalent-sized sets of randomly generated mod-
els. In three of four challenges, our estimated stacking models outperform every simulated
model. In theMexico challenge, 2.1 percent percent of the simulated models outperform our
estimated stacking models (p = 0.021). Consistent with our interpretation of Figure 7, this
suggests that the best user-submitted models outperform machine-selected models. These
highly-predictive models yield performance gains of the stacking meta-model.
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Figure M.1: Horserace simulation. The density plots represent the distribution ofR2
loo’s from

5,000 sets of simulated three-predictor models in the common MC datasets for each chal-
lenge.

Table M.1: Comparing model performances between user-submitted and simulated three-
predictor models.

User-submitted Simulated
Challenge Mean SD 95% CI (L) 95% CI (U) Skew Kurtosis Mean SD 95% CI (L) 95% CI (U) Skew Kurtosis
Crossnational 0.11 0.24 -0.39 0.44 -0.83 3.55 -0.06 0.24 -1 0.19 -2.37 9.18
India 0.19 0.21 -0.14 0.41 -0.74 2.08 -0.17 0.40 -1 0.35 -0.88 2.83
Mexico -0.04 0.49 -0.90 0.44 -0.79 2.51 -0.29 0.40 -1 0.29 -0.68 2.37
USA 0.30 0.20 -0.11 0.54 -0.80 2.90 -0.19 0.20 -1 0.02 -2.49 10.24

xxi



0

5

10

15

−1.0 −0.5 0.0 0.5 1.0

Rloo
2

D
en

si
ty

A. Crossnational

0

2

4

6

−1.0 −0.5 0.0 0.5 1.0

Rloo
2

D
en

si
ty

B. India

0

1

2

3

4

5

−1.0 −0.5 0.0 0.5 1.0

Rloo
2

D
en

si
ty

C. Mexico

0.0

2.5

5.0

7.5

10.0

−1.0 −0.5 0.0 0.5 1.0

Rloo
2

D
en

si
ty

D. USA

Figure M.2: Stacking simulation. The histograms represent the distribution of R2
loo’s from

5,000 simulated stacking models in the common MC datasets for each challenge.
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